
ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math.

Prof. Hiren Patel, Ph.D.

Prof. Werner Dietl, Ph.D.

© 2020 by the above. Some rights reserved.

Writing tests

2
Writing tests

Outline

• This is the third in a sequence of six topics on

– C assertions

– Code development strategies

– Testing

– Commenting your code

– Using print statements for debugging

– Using tracing for debugging

3
Writing tests

Outline

• In this topic, we will:

– Describe how to write a test

– Explain why tests should be written first

– Look at some examples where we write tests for specific functions

– Emphasize that all code should be executed by at least one test

4
Writing tests

Testing your code

• When you are given a project or assignment,

you will be given a description and requirements

– Initially, we will give you many if not all appropriate tests

– You should, however, always consider

“What is required, and how can I test this?”

5
Writing tests

Median of three

• Suppose you are asked to author a median-of-three function

– The median is the middle number

• The function declaration is:

double median(double x, double y, double z);

6
Writing tests

Median of three

• In your main() function, you could now include a test:
#include <iostream>

// Function declarations

int main();

double median(double x, double y, double z);

// Function definitions

int main() {

std::cout << median(1.2, 3.5, 7.9) << " = 3.5" << std::endl;

return 0;

}

double median(double x, double y, double z) {

// Your implementation of this function

return 0.0;

}

Output:
 3.5 = 3.5

7
Writing tests

Median of three

• One test, however, is not enough

– First, the median could be in any location:

std::cout << median(5.4, 3.5, 7.9) << " = 5.4" << std::endl;

std::cout << median(-1.2, 3.5, 7.9) << " = 3.5" << std::endl;

std::cout << median(8.2, -8.5, -4.5) << " = -4.5" << std::endl;

• Note that both positive and negative numbers are used

– Don’t just favor positive values because they’re easier to type

– Next, switch the order of the other two entries:

std::cout << median(6.4, 7.5, 3.9) << " = 6.4" << std::endl;

std::cout << median(11.2, 1.5, -8.5) << " = 1.5" << std::endl;

std::cout << median(-8.3, 22.5, -2.5) << " = -2.5" << std::endl;

8
Writing tests

Median of three

• Next, will your code execute correctly if two of the or all three
arguments are equal?

std::cout << median(1.1, 1.1, 1.1) << " = 1.1" << std::endl;

std::cout << median(-5.4, -9.5, -5.4) << " = -5.4" << std::endl;

std::cout << median(-9.2, 7.5, 7.5) << " = 7.5" << std::endl;

std::cout << median(8.2, 8.2, -4.5) << " = 8.2" << std::endl;

std::cout << median(-1.5, 8.9, -1.5) << " = -1.5" << std::endl;

std::cout << median(19.2, -1.5, -1.5) << " = -1.5" << std::endl;

std::cout << median(8.6, 8.6, 99.5) << " = 8.6" << std::endl;

– Notice that the values are being changed with each example?

9
Writing tests

Median of three

• Finally, it’s not a bad idea to test some really extreme cases:
std::cout << median(-5.092e73, 3.5113e99, -9.283e-82)

 << " = -5.092e73" << std::endl;

10
Writing tests

Median of three

• Thus, here is our new main() function:
int main() {

 std::cout << median(5.4, 3.5, 7.9) << " = 5.4" << std::endl;

 std::cout << median(-1.2, 3.5, 7.9) << " = 3.5" << std::endl;

 std::cout << median(8.2, -8.5, -4.5) << " = -4.5" << std::endl;

 std::cout << median(6.4, 7.5, 3.9) << " = 6.4" << std::endl;

 std::cout << median(11.2, 1.5, -8.5) << " = 1.5" << std::endl;

 std::cout << median(-8.3, 22.5, -2.5) << " = -2.5" << std::endl;

 std::cout << median(1.1, 1.1, 1.1) << " = 1.1" << std::endl;

 std::cout << median(-5.4, -9.5, -5.4) << " = -5.4" << std::endl;

 std::cout << median(-9.2, 7.5, 7.5) << " = 7.5" << std::endl;

 std::cout << median(8.2, 8.2, -4.5) << " = 8.2" << std::endl;

 std::cout << median(-1.5, 8.9, -1.5) << " = -1.5" << std::endl;

 std::cout << median(19.2, -1.5, -1.5) << " = -1.5" << std::endl;

 std::cout << median(8.6, 8.6, 99.5) << " = 8.6" << std::endl;

 std::cout << median(-5.092e73, 3.5113e99, -9.283e-82)

 << " = -5.092e73" << std::endl;

 return 0;

}

11
Writing tests

Median of three

• If you execute your code, it should compile:

Output:

 0 = 5.4

 0 = 3.5

 0 = -4.5

 0 = 5.4

 0 = 3.5

 0 = -4.5

 0 = 1.1

 0 = -5.4

 0 = 7.5

 0 = 8.2

 0 = -5.4

 0 = -7.5

 0 = 8.2

 0 = -5.092e73

12
Writing tests

Median of three

• As you implement your function,

 more and more of the outputs should appear as expected

Output:

 5.4 = 5.4

 3.5 = 3.5

 -4.5 = -4.5

 5.4 = 5.4

 3.5 = 3.5

 -4.5 = -4.5

 1.1 = 1.1

 -5.4 = -5.4

 7.5 = 7.5

 8.2 = 8.2

 -5.4 = -5.4

 -7.5 = -7.5

 8.2 = 8.2

 -9.283e-82 = -5.092e73

13
Writing tests

Median of three

• If the output differs from what is expected,

 there are always two possibilities:

– There is a bug in the source code

– There is a bug in the test

• What is wrong here?
std::cout << median(-5.092e73, 3.5113e99, -9.283e-82)

 << " = -5.092e73" << std::endl;

• The correct test is:
std::cout << median(-5.092e73, 3.5113e99, -9.283e-82)

 << " = -9.283e-82" << std::endl;

14
Writing tests

Testing your code

• Why write the tests first?

– If you write your source code first,

 your source code will influence the tests you write

– If you made a mistake in your reasoning while authoring your code,

 you may make the exact same mistake when authoring the tests

• The tests should be written based on the specifications and
requirements

15
Writing tests

Testing your code

• Here is a strategy:

Working with at least one other student, take turns for each project or
assignment, where one student writes the tests before starting to
author a solution.

Share the test cases with your peers.

• In ECE 250, on occasion, one student would author a 100-line and
even a 1000-line test for all students in the course

– In one case, the test missed one interesting edge case,

 so almost all students got that edge case wrong

– In one case, the class asked if that student could get a bonus

16
Writing tests

Testing your code

• In this course, you will never be penalized for sharing tests

– Sharing tests is encouraged

Never share your solutions to the assignments or projects!!!

17
Writing tests

Edge cases

• An edge case is a situation when one parameter takes on a specific
value that approaches a boundary

– Recall the example of reversing the digits of a number:

• Given 9512, output 9512|2159

• Given -42, output -42|24-

– My source code would not work given 0, it would print 0|

• Had I not thought to test this edge case,

 my tests would have all passed and I would be oblivious

• Recall that in the end, I dealt with this case separately:

 void reverse(int n) {

 if (n == 0) {

 std::cout << "0|0" <<std::endl;

 return;

 }

18
Writing tests

Greatest common divisor

• What tests would be author for the greatest common divisor?

– gcd(n, n) = n

– gcd(n, –n) = n

– gcd(–n, –n) = n

– gcd(–n, n) = n

– gcd(n, 5n) = n

– gcd(n, –12n) = n

– gcd(n, 0) = n

– gcd(0, 0) = 0

– gcd(m, n) = gcd(n, m) for various pairs of m and n

– Find cases when gcd(m, n) = 1

• Check when m and n are prime and composite

– Find some very large prime numbers and use them in your tests

19
Writing tests

Ensure all code is tested

• When you finish writing your code,

 make sure that each line of code is executed in at least one test

– This is a way of checking your test cases

• For example, this code finds them minimum of three values:
int min(int a, int b, int c) {

 if (a <= b) {

 if (a <= c) {

 return a;

 } else {

 return c;

 }

 } else {

 if (b <= c) {

 return b;

 } else {

 return c;

 }

 }

}

20
Writing tests

Summary

• Following this lesson, you now:

– Know you should author tests

• Tests should be written before the code is written

• Work with your peers

– Ensure that all code is tested at least once

21
Writing tests

References

[1] Wikipedia:

 https://en.wikipedia.org/wiki/Therac-25

 https://en.wikipedia.org/wiki/Tacoma_Narrows_Bridge_(1940)

 https://en.wikipedia.org/wiki/Citigroup_Center#Engineering_crisis_of_1978

 https://en.wikipedia.org/wiki/Software_testing

22
Writing tests

Acknowledgments

None so far.

23
Writing tests

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

24
Writing tests

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

	Default Section
	Slide 1: Writing tests
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: Testing your code
	Slide 5: Median of three
	Slide 6: Median of three
	Slide 7: Median of three
	Slide 8: Median of three
	Slide 9: Median of three
	Slide 10: Median of three
	Slide 11: Median of three
	Slide 12: Median of three
	Slide 13: Median of three
	Slide 14: Testing your code
	Slide 15: Testing your code
	Slide 16: Testing your code
	Slide 17: Edge cases
	Slide 18: Greatest common divisor
	Slide 19: Ensure all code is tested
	Slide 20: Summary
	Slide 21: References
	Slide 22: Acknowledgments
	Slide 23: Colophon
	Slide 24: Disclaimer

